Object Oriented Programming
for Scientists

Tom Clune :::

SIVO Fortran 2003 Series :.
April 22, 2008

Logistics

e Materials for this series can be found at

Contains slides and source code examples.
Latest materials may only be ready at-the-last-minute.

e Please be courteous:

Remote attendees should use “*6” to toggle the mute. This
will minimize background noise for other attendees.

4/22/08 OOP for Scientists 2

Outline

e \Weaknesses of structured programming
e Detailed motivating example

e Basic concepts of OOP

e Applying OOP to motivating example

e Extents of applicability

4/22/08 OOP for Scientists

Caveats

e OOP is a major paradigm shift which generally takes
years to fully absorb.

e This talk is meant to motivate the rationale for using
OOP in some circumstances within scientific models.

This talk is not meant as a substitute for actual
training/experience.

ots of excellent sources on the web.

Most examples are motivated by computer science
considerations and may therefore be unconvincing for typical
physical scientists.

4/22/08 OOP for Scientists 4

(Narrow) History of OOP

e OOP grew out of perceived weaknesses/difficulties of structured
programming:
Structured programs consisted of (global) data structures and disjoint
procedures for accessing/modifying the data structures.

Difficulties arise especially for large systems composed in this manner.

e Weakness 1: Lack of support for encapsulation

Modifications are difficult/expensive

Explicit references to data structure components forces frequent and
pervasive changes on implementation as the data structure evolves over
time.

Example: “Y2K” bug. Representation was explicit throughout the code.
Developers need to be expert in all parts of the application.

Limited modularity
DRY principle: Don’t Repeat Yourself

4/22/08 OOP for Scientists 5

History (cont’d)

e \Weakness 2: Lack of support for extension/inheritance

4/22/08

|solated use cases that require different logic cannot be directly
supported. Workarounds are tedious at best and tend to bloat logic
and data structures.

Weakness 2b: Centralized development constraint

If an external developer creates a useful extension, she must push
the extension back to the original developers in order to be of use to
other users.

Common problem for developers of infrastructure layers.

E.g. if | create a new type of grid for ESMF, | cannot share the
extension with other users in any simple manner. Instead, ESMF
core development would need to incorporate the extension in later
releases.

OOP for Scientists 6

History of OOP (cont’d)

e \Weakness 3: Lack of support for polymorphism
Sometimes referred to as dynamic dispatch

Common scenarios involve multiple implementations of the same
functionality. Support for variations leads to pervasive nested
conditionals which increase complexity and errors.

Examples:
Support for multiple coordinate systems or grids
Support for multiple nonlinear solvers
e Weakness 4: Lack of support for templates

Developers often encounter the need to support several data
structures that are nearly identical but vary in some systematic
ways.

Difficult to maintain consistency as such structures are extended.
E.g. real and integer arrays

4/22/08 OOP for Scientists 7

Motivating Example

e Suppose we have an algorithm which involves a system of linear
equations at some intermediate stage:
AX=Db
Initially we create a procedure that looks like:
subroutine matrixSolve(array, rhs, solution)
and declare local variables:

real matrix(n,n)
real solution(n), rhs(n)

Later development shows that the same equation must be solved
multiple times for the same rhs. So we use LU decomposition for
performance and have two procedures:

subroutine LUFactor(array, LUfact, pivots)

subroutine LUSolve(LUfact, pivots, rhs, solution)
and local variables:

real :: LUFactorization(n,n)

integer :: pivots(n)

4/22/08 OOP for Scientists 8

Example 1 (cont’d)

e Notice how our algorithm is already exposing aspects
of matrix solving that are irrelevant to the algorithm

4/22/08

Local variables (pivot, LU factorization)
Methods: factor, LU backsubstitution

If we change the linear solver, we will probably have to
change our driver code for the solver.

In real world cases, the “hardwiring” of the solver might occur
frequently throughout the application.

OOP for Scientists 9

Example 1 (cont’d)

e Now we discover that many (but not all) cases actually involve large
banded matrices, and we want to save space and time for those:

Local variables
logical :: isBanded
integer :: nUpperBands, nLowerBands
real, allocatable :: bandedMatrix(:,:)
real, allocatable :: bandedFactors(:,:)

And conditionals:
if (isBanded) then
call bandedLUFactor ()

else
call LUFactor()
end if

if (isBanded) then

call bandedLUSolve(..)
else

call LUSolve(..)
end if

4/22/08 OOP for Scientists 10

Example

e Variation in our linear solver is starting to significantly
pollute our high-level algorithm

More local variables

Many not even used in any given invocation
Lots of conditionals

Code bloat

Extra complexity.

e Butwalt ... it can get worse!

4/22/08 OOP for Scientists 11

Example (cont’d)

Years later, the size of our matrices has grown
considerably due to increased model resolution/data

Analysis of our algorithm shows that in many (but not
all) cases, an iterative solution would converge quickly
to sufficient accuracy.
A variety of preconditioners are available, but we're not sure
which will work best in practice.
Further analysis shows that even in some parameter
regimes, many matrix elements are approximately O.
Optimization is obtained by using a compressed
sparse matrix representation.

4/22/08 OOP for Scientists 12

Example (cont’d)

e Local Variables

logical :: uselIteration
logical :: isSparse
real, allocatable

sparsePreconditioner(:,
real, allocatable bandedPreconditioner(:,
real, allocatable sparseMatrix(:)
integer, allocatable :: sparseindex(:)

e Logic:

if (isSparse) then ! Always use iterative
call factorPreconditioner(..)
elseif (isBanded) then
if (uselIteration) then
call factorBandPrecond(..)

:)
:)

else
call bandLUFactor(..)
endif
else ! Full matrix
if (uselIteration) then
call factorFullPrecond(...)
else
call LUFactor(..)
end if

end if
4/22/08 OOP for Scientists 13

Example 1 (cont’d)

e Now suppose that someone decides to allow for iterative
methods for the solution of the matrices.

Need to allow for preconditioners

Need an initial “guess”

Need to allow for convergence tests

Need to allow for variations on iterative approach

e All of this would actually be somewhat more messy than |
have indicated here.

o What has happened!? The algorithm we are working with
just needs to solve a system of linear equations!

If multiple parts of our program need to solve matrices they may
also be subject to the same escalation in complexity.

Question: Can’'t we somehow “hide” the complexity elsewhere in the
software? Exposing only the commonalities at the top level?

4/22/08 OOP for Scientists 14

Example 1 (cont’d)

e And now ... we need it to work In
parallel on a cluster!

u Job security
for life.

4/22/08 OOP for Scientists 15

Other examples

e AIr parcel trajectory code
Needs to support multiple vector fields
Analytic

File-based
= Multiple interpolation schemes

Needs to support multiple integration schemes
Runge-Kutta (2nd, 4th, 8th order)
Adams-Bashforth, etc.
Can we hide details of spherical coordinates from other
layers?
e Parallelization
Can we write our algorithms such that they appear serial?

4/22/08 OOP for Scientists 16

Other examples

e Multiple Computational Grids
E.g. for coupled Earth systems we might have
Lat-Lon (Arakawa A, B, C, D)
Cubed-Sphere (Arakawa ...)
lcosahedral

Some subsystems can “work” with any grid, while others are
dependent on specific representations.

Coupling can require custom interpolations between grids.

Can we provide a software layer that supports various grid-specific
operations while hiding the details from the layers that don'’t really
care which grid is being used?

Domain-decomposition, halo-fill
I/O operations

4/22/08 OOP for Scientists 17

What is OOP

e Obiject oriented programming is a paradigm in which the
fundamental participants are “objects” which embody both state
and behavior.

A class is a set of properties and related procedures which
access/modify those properties.

Objects are individual instances of classes.
State of an objects consists of the values of the class properties.

Behavior of objects is expressed in terms of methods which are the
class procedures. Methods have privileged access to object state.

Method invocation may look different than regular procedure calls.

e Within a program, objects interact with each other by sending
messages (i.e. invoking methods)

e A not-so-obvious example of a class is that of Fortran arrays:
Methods include shape(), size(), transpose(), minval(), etc.

4/22/08 OOP for Scientists 18

Encapsulation

e Encapsulation is the ability to isolate and hide implementation
details within a software subsystem.
Instead of directly accessing items in a data structure, methods are
invoked to retrieve/modify.
If implementation details change, access methods are updated and
client code remains unchanged.
E.g.
month = date % month ! Assumes “month” field

becomes
month = getMonth(date) ! Does not assume “month”

Remember - the big wins are for complex software with many
complex data structures.
e Note: Fortran 90 introduced strong encapsulation capabilities
with public/private access for module entities.

4/22/08 OOP for Scientists 19

Inheritance

e Inheritance is a way to form new classes using classes that have
already been defined.
Original class is referred to as the base class (or parent class)
New class is referred to as the child class or subclass
Intent is to reuse significant portions of base class.
Child class may add additional fields/components

Child class may override some methods of the parent class and leave other
behaviors unchanged.

e Inheritance relations always form hierarchical trees.

e Fortran 2003 introduces inheritance (keyword: extends)

e Child class should be usable in any context where the base class
is usable.

Useful notion: “is-a” relationship categorization:
E.g. frog is-a kind of amphibian
Sparse matrix is-a kind of matrix

4/22/08 OOP for Scientists 20

Inheritance Example B

4/22/08 OOP for Scientists 21

Inheritance (cont.d)

e Inheritance Pitfall - the real world is not always easily divided into neat
categories:

Obligatory example: the platypus (an egg-laying mammal)
Subtle conflicts can ruin an OO design

e Abstract and Concrete classes

A common scenario in OOP is for multiple variations to exist without
any particular base implementation from which to inherit.

The solution is to use an abstract class which defines the shared
interfaces but defers the implementation to the subclasses.

Subclasses are referred to as concrete classes.

Cannot declare objects of the abstract class; only of concrete
classes.

Examples:
Grid - no generic kind of grid just lots of subclasses.

AtmosphericGCM could be abstract, with concrete implementations
for GEOS5_AGCM and GISS_AGCM. Encourages plug-and-play.

4/22/08 OOP for Scientists 22

Inheritance Example B

Abstract
Types

4/22/08 OOP for Scientists 23

Function/procedure pointers

e While not strictly an OO concept, function pointers are
a major part of the implementation of OO abstractions.

4/22/08

A function pointer is a data type that is able to be associated
with actual functions/procedures. The association is
determined at run-time.

Data structure with function pointer can be used to invoke
different behavior in different contexts by associating with
different actual functions.

No analog in Fortran 95 - but introduced in Fortran 2003
Not simply function dummy arguments - no way to save

OOP for Scientists 24

Polymorphism

e Polymorphism is the capability of treating objects of a subclass
as though they were members of the parent class.

e A polymorphic variable is one whose actual type is not known
at compile time.

Run-time environment calls the appropriate methods on depending
on actual type (or dynamic type)

Implemented with dynamic binding (usually function pointers)
Details of associating with specific type are language dependent

e Polymorphism and inheritance are distinct aspects but are
typically applied together for maximum impact.

e E.g. polymorphic variable myShape of class “Shape” will
compute the compute area/perimeter according to type set at
run time.

e Introduced in Fortran 2003.

4/22/08 OOP for Scientists 25

Advantages of Polymorphism

e (Generic programming - high level algorithms are
written in terms of the base class. Do not need to

write variants for each subclass.

E.g. an algorithm working with linear equations can be written
in terms of methods for generic matrices, while the specific
operations (factor(), solve()) are implemented differently for
the subclasses (Dense, Sparse, Banded)

e Allows customization without violating encapsulation.
Extension does not require access to source of the base-

class.
Rare case where one can eat-the-cake and have-it-too.

4/22/08 OOP for Scientists 26

Aside on Overloading

e AKA ad-hoc polymorphism

e Ability to use the same name for multiple procedures.
Actual procedure used is determined by type of arguments.

e Noft based upon any type hierarchy

No reuse is possible - each type must have a full
implementation of the overloaded procedure.

e Introduced in Fortran 90 with interface blocks

4/22/08 OOP for Scientists 27

Templates

e AKA Parametric Polymorphism

e Some languages support the ability to declare multiple
similar classes simultaneously.
Routines using the type then specify which case to use
Distinct from first notion of polymorphism
Can have performance advantages - static binding
Not generally as flexible

e Fortran 2003 introduces a limited form
Derived types can be parameterized for “kinds” and sizes.
Cannot parameterize integers and reals simultaneously.

4/22/08 OOP for Scientists 28

Example 1 revisited

e Using OOP terminology we can now sketch out a design which is more
modular.

e First, we want to support different internal representations of matrices,
and introduce an abstract class: Matrix
Subclass DenseMatrix would use conventional array storage
Subclass SparseMatrix would contain
BandedMatrix
BlockDiagonalMatrix
CompressedSparseMatrix
e Fundamental methods could be
Get matrix element |,J
Matrix-vector multiplication - needed for iterative solvers
Row operations (row; = row; + x * row;) needed by direct solvers

Perhaps use stubs for combinations we don’t want to support. (E.g.
probably don’t need direct solve on CompressedSparseMatrix)

4/22/08 OOP for Scientists 29

Matrix Class Hierarchy e

4/22/08 OOP for Scientists 30

Example 1 revisited

e For the solver hierarchy we have the class: MatrixSolver

Abstract since we will have different representations of the
underlying matrix and no default representation:

Primary methods are preprocess() and solve()

preprocess() would do any initial calculations such as factorization
that would be used for multiple solve() operations.

solve() would accept a rhs and return a solution

e Note that the hierarchy should make no assumption about
underlying implementation of matrices.
Just rely on methods from the Matrix base class.

In practice we may violate this somewhat for performance reasons,
esp. in the case of the direct solver. Modest retreat in struggle
against complexity.

4/22/08 OOP for Scientists 31

Example 1 cont’d

e Subclasses:

DirectMatrixSolver
LU_MatrixSolver
QR_MatrixSolver

IterativeMatrixSolver
PCG
GMRES

Iterative solvers would optionally accept a preconditioner and a
tolerance.

Preconditioner could itself be a MatrixSolver object!

4/22/08 OOP for Scientists 32

Linear Solver Hierarchy o

4/22/08 OOP for Scientists 33

Using the linear solver

High Level

Algorithm ISR

1

aMatrix

Algorithm “has-a” MatrixSolver initialized with a Matrix
object. Subtypes of each are not directly known.
Matrix and MatrixSolver classes collaborate.

4/22/08 OOP for Scientists

34

OOP and Model Infrastructure

e The clearest case for OOP in scientific models is in the
“infrastructure” which manages the various model abstractions.
Infrastructure includes
I/O
Computational grid
Loop constructs
Domain decomposition
Calendars/clocks

Common infrastructure issues among various Earth system models
led to the creation of the ESMF. While not truly OO, ESMF is
strongly encapsulated and has an object based look-and-feel.

With the availability of OOP, some aspects of ESMF become trivial,
and others could be extended to be far more powerful.

4/22/08 OOP for Scientists 35

OOP and Numerics

e As seen in the earlier example, OOP can be a useful
approach for some numerical issues. When multiple
data representations are possible and require different
(but comparable) algorithmic treatments,
inheritance/polymorphism become very important.

4/22/08 OOP for Scientists 36

Parameterized physics?

e Even when the the detailed implementation of a
parameterized model is not based upon objects, it
might make sense to consider the model to be a
concrete implementation of some abstract model.

A strong step towards enabling plug-and-play with other
Implementations

Encourages user extensions/enhancements and eases the
reintegration of such changes into the original model.

4/22/08 OOP for Scientists 37

Resources

SIVO Fortran 2003 series:

Questions to Modeling Guru:
SIVO code examples on Modeling Guru
Fortran 2003 standard:

John Reid summary:

Newsgroups

Mailing list

4/22/08 OOP for Scientists

38

Next Fortran 2003 Session

e Inheritance in Fortran 2003
e Tom Clune will present

e Tuesday, May 06, 2008

e B28-E210 @ 12:00 noon

OOP for Scientists

